
A Model Error Formulation of the Multiple Model

Adaptive Estimation Algorithm

Christopher K. Nebelecky

Research Scientist

Information Fusion Group

CUBRC, Inc.

Buffalo, NY 14225-1955 U.S.A.

chris.nebelecky@cubrc.org

John L. Crassidis

Professor

Dept. of Mech. & Aero. Eng.

University at Buffalo

State University of New York

Amherst, NY 14260-4400 U.S.A.

johnc@buffalo.edu

Puneet Singla

Assistant Professor

Dept. of Mech. & Aero. Eng.

University at Buffalo

State University of New York

Amherst, NY 14260-4400 U.S.A.

psingla@buffalo.edu

Abstract—This paper presents a new form of the multiple
model adaptive estimation algorithm for improved state tracking
in systems with unknown system models. The proposed approach
differs from existing multiple model methods in the manner in
which the covariance and Kalman gains of the individual filters
are calculated. By using the fused model estimate, recursions
for the actual estimation error covariances are derived which
account for the deviation of the hypothesized model from the
fused model. Using these covariances to determine the Kalman
gain leads to improved tracking estimates through fusion of
model and measurement uncertainty. The proposed algorithm
has been compared against the standard multiple model adaptive
estimation and interacting multiple model algorithms in two
simulated examples, resulting in improved, and comparable
tracking performance, respectively.

Index Terms—Multiple-model adaptive estimation, filtering,
target tracking.

I. INTRODUCTION

Multiple model adaptive estimation (MMAE) is a recursive

algorithm which uses a parallel bank of estimators (filters),

each dependent upon a particular hypothesis, to determine a

statistically rigorous estimate of the physical process under

consideration. In particular, the hypotheses can correspond to

different mathematical models of the same physical process,

or of the same model but dependent upon different model

parameters. The state estimate from an MMAE process is

given by a weighted average of each filter’s state estimate.

The weights correspond to the normalized likelihood of the

individual estimates conditioned on observed measurement

sequence.

The concept of MMAE was first introduced by Magill

for the problem of estimating the output from a plant in

the presence of uncertain stochastic noise [1]. Since then,

MMAE has found application is a wide variety of applica-

tions including parameter identification [2], control [3], fault

detection [4], sensor calibration [5] and model identification

[6]. The standard implantation of MMAE considers a finite

set of hypotheses which are used to seed the bank of filters.

The filters then independently run in parallel using their

assigned hypothesis to reduce the available measurements.

This approach typically works best when the hypothesized

parameters or model are stationary or follow a prescribed

trajectory defined by the hypothesis. In situations where the

model parameters change, as is common in fault detection,

a derivation of MMAE known as interacting multiple model

(IMM) can yield improved performance over standard MMAE

[7]. The switching of hypotheses in an IMM can be either

random or deterministic, although the most common is to

model the switches as a Markov sequence [11, 12]. Other

variations of MMAE with time-varying hypothesis banks have

also been developed [10], [11].

The driving force behind MMAE is the computation of

the mode-conditioned likelihoods of the observed residual

sequences which are used in calculating the conditional prob-

abilities that each hypothesis correctly models the system. For

observations corrupted by zero-mean Gaussian measurement

noise, the mode-conditioned likelihood function take on the

familiar form of a multivariate Gaussian probability density

function with zero-mean and covariance E(j). The actual

measurement-minus-estimate residual from the j th filter, e(j),

is used to evaluate the likelihood function and thus relating the

conditional probability to the actually observed data. However,

as discussed in Ref. [12], the covariance E(j) can represent the

covariance of e(j) if and only if the j th hypothesis is the true

system model. Otherwise this covariance is nothing more than

an approximation. In certain instances, when the hypothesis set

does not include a suitable approximation to the true system,

or in many nonlinear systems, such an approximation can lead

to inconsistent (overconfident) estimates and /or divergence of

the MMAE process. For linear systems, the actual innovations

covariance can be recovered by accounting for the deviation of

the modeled system from the true system [13]. For traditional

filtering applications, such an approach is futile because the

true system is necessarily unknown. However, via the multiple

model approach, an estimate of the true system is available.

This paper focuses on the fusion of these two tools into a

single capability, called model error MMAE, which aims to

improve overall tracking performance by leveraging MMAE-

based estimates of the true system to drive the individual

filters.

The organization of the remainder of this paper is as follows.



We begin with a terse review of the extended Kalman filter in

order to introduce notion. Following this, the MMAE weight

recursion is reviewed. Recursions for the actual estimation

error covariance from a Kalman filter designed around an in-

correct model are then presented. This derivation leads directly

to the development of the model error MMAE. Two simulation

examples are then presented in order to provide proof-of-

concept and show the benefits of the proposed algorithm.

II. EXTENDED KALMAN FILTER

This work utilizes Kalman filters, including the extended

Kalman filter (EKF) to reduce noise corrupted observations

on an assumed dynamic model. This section provides a

terse presentation of the well-known EKF so as to introduce

notation for future developments. For more formal treatment

of the Kalman filter and its derivation, interested readers are

referred to other works such as Ref. [12]–[14].

Consider a nonlinear continuous-time system excited by

noise:

ẋ(t) = f(x(t), t) +G(t)w(t) (1)

where x(t) ∈ R
n is the system state vector at time t,

f(·) : R
n → R

n is the system dynamic model, G(t)
is the process noise distribution matrix and w(t) is the

process noise vector which is assumed to be a zero-mean

Gaussian noise process with spectral density Q(t)., i.e.

w(t) ∼ N (w(t); 0, Q(t)). Observations of the system state

are available at discrete instances, k, and related to the system

state as

yk = h(xk) + vk (2)

where h(·) : R
n → R

m is the sensor observation model

and vk ∼ N (vk; 0, Rk) is zero-mean Gaussian white noise

which corrupts the observations. Realizations of the observa-

tions {yk} are denoted as {ỹk}.

Let x̂+
k represent the a posteriori state estimate after pro-

cessing all measurements, up to and including ỹk, and P+
k

represent the covariance of the estimate errors. The prediction

step, projecting the estimate forward in time is given by

x̂−

k+1 = fk(x̂
+
k ) where the discrete nature of the propagation

can result from either direct discretization of Eq. (1) or

indirectly through numerical integration of the continuous-time

dynamics. The predicted estimate, x̂−

k+1 is the a priori state

estimate at time k + 1. Oftentimes, if the sampling interval

is below Nyquist’s limit, a discrete-time propagation of the

covariance is used:

P−

k+1 = ΦkP
+
k ΦT

k +Qk (3)

where Φk is the discrete-time state transition matrix of

F (x̂(t), t) ≡
∂f

∂x

∣

∣

∣

∣

x̂(t)

and Qk is the discrete-time process

noise covariance matrix. These matrices can be numerically

computed for a constant sampling interval using an algorithm

given by van Loan; details can be found in Ref. [14].

Upon receipt of a new measurement, ỹk, the estimate and

covariance are updated:

x̂+
k = x̂−

k +Kkek (4a)

ek = ỹk − h(x̂−

k ) (4b)

P+
k = [I −KkHk(x̂

−

k )]P
−

k [I −KkHk(x̂
−

k )]
T +KkRkK

T
k

(4c)

where Hk(x̂
−

k ) ≡
∂h

∂x

∣

∣

∣

∣

x̂
−

k

and Kk is the Kalman gain:

Kk = P−

k HT
k (x̂

−

k )E
−1
k (5a)

Ek ≡ E
[

ek e
T
k

]

= Hk(x̂
−

k )P
−

k HT
k (x̂

−

k ) +Rk (5b)

where E [·] is the expectation operator.

III. MULTIPLE MODEL ADAPTIVE ESTIMATION

This section provides a brief review of the multiple model

adaptive estimation algorithm which serves to motivate the

current work. A more thorough treatment of the subject can

be found in Ref. [12]. Multiple model adaptive estimation

(MMAE) is a recursive algorithm that uses a bank of filters op-

erating in parallel where each filter is purposefully dependent

upon a particular hypothesis, θ(j). A finite set of M hypothesis

of θ is available as Θ =
{

θ(1), θ(2), . . . , θ(M)
}

. This set

can be comprised of random samples drawn from some a

priori probability density function (pdf) p(θ), discretization

of a continuous parameter space in θ, or an entire sample

space in θ. The goal of the MMAE process is to determine

p(θ = θ(j)|Ỹk+1) ≡ p(θ(j)|Ỹk+1), the conditional proba-

bility of the j th hypothesis, θ(j), given all available measure-

ments:

p(θ(j)|Ỹk+1) =
p(θ(j), Ỹk+1)

p(Ỹk+1)
(6)

where Ỹk+1 = {ỹk+1, ỹk, . . . , ỹ1} is the sequence of

measurements up to and including time index k+1. Through

repeated use of the definition of conditional probability and

well as the law of total probability [15], Eq. (6) can be

expressed as [12]

p (θ(j)|Ỹk+1) =
p (ỹk+1|Ỹk, θ

(j)) p (θ(j)|Ỹk)
M
∑

ℓ=1

[

p (ỹk+1|Ỹk, θ
(ℓ)) p (θ(ℓ)|Ỹk)

]

(7)

The quantity p(ỹk+1|θ(j), Ỹk) = L(ỹk+1|θ(j), Ỹk) is the

mode-conditioned likelihood function at time index k+1. Also

note that the denominator in Eq. (7) is simply a normalizing

constant [12]. Defining ̟
(ℓ)
k ≡ p (θ(j)|Ỹk) as the weight

associated with the j th hypothesis leads to the following

recursion for the MMAE weights:

̟
(j)
k+1 =

̟
(j)
k L (ỹk+1|θ(j), Ỹk)

M
∑

ℓ=1

[

̟
(ℓ)
k L (ỹk+1|θ

(ℓ), Ỹk)
]

(8)



When observations are corrupted by zero-mean Gaussian

noise, such as in Eq. (2), the mode-conditioned likelihood

function assumes the familiar form:

L (ỹk+1|θ
(j), Ỹk) ∼ N

(

e
(j)
k+1;0, E

(j)
k+1

)

(9)

The MMAE algorithm, by itself, provides only the proba-

bility that each hypothesis is correct to the system given the

observation history. The state estimation results, however, can

be interpreted in any manner appropriate to the system under

consideration. For systems whereby the composition of the

state vector is θ-dependent, a maximum a posteriori (MAP)

interpretation of the results is adopted whereby the estimates

from the mode-conditioned filter with the highest weight are

adopted [5]. For systems with a θ-independent state vector

composition, the system state estimate and its covariance are

given by a weighted average of the individual estimates: [16]

x̂+
k =

M
∑

j=1

̟
(j)
k x̂

+(j)
k (10a)

P+
k =

M
∑

j=1

̟
(j)
k

[

P
+(j)
k +

(

x̂
+(j)
k − x̂+

k

)(

x̂
+(j)
k − x̂+

k

)T
]

(10b)

Estimates for the unknown model, θ̂, are similarly available.

Where appropriate, the θ̂k can be accepted as the MAP

hypothesis, or as a weighted average of all hypotheses:

θ̂k =

M
∑

j=1

̟
(j)
k θ(j) (11)

In many situations, interpretation of the estimated states and

model will be treated similarly. That is, if the states estimates

are obtained using Eq. (10a) then the model estimate will be

determined using Eq. (11). However, it should be noted that a

mixed interpretation is also valid. An example of such a mixed

approach is shown is Ref. [6]. There the state estimates are

obtained using Eq. (10a) while a MAP interpretation of the

model is used.

Several results surrounding the convergence properties of

MMAE have been presented in literature. For the case where

the true hypothesis, is a member of the set of hypotheses,

i.e. θ = θ(j) ∈ Θ, Ref. [12] has shown that the true

hypothesis will be identified with p(θ(j) = θ|Ỹk) = 1 as

k → ∞ while p(θ(i) = θ|Ỹk) = 0, i 6= j, in the same

interval. This proof assumes that the innovations sequence
{

e
(j)
k

}

is ergodic although the results are also valid when the

innovations sequence is asymptotically wide sense stationary.

Further, it was shown in Ref. [17] that convergence can also be

shown in some non-stationary situations. When θ = θ(j) 6∈ Θ,

Ref. [12] shows that the MMAE algorithm will converge to

θ(j), the member of the Θ which is closest to θ, in the sense

of minimizing the Kullback information function [18].

IV. MODEL ERROR

As discussed in Ref. [12], the sequence
{

e
(j)
k

}

will have

covariance given by
{

E
(j)
k

}

if and only if θ(j) = θ, i.e.

if the acting hypothesis is the true model for the system.

Even in the most ideal scenario, this will be true only for

a single model in the set Θ. For all other θ(i) 6= θ ∈ Θ,

it is necessarily the case that
{

E
(i)
k

}

will not accurately

represent the covariance of the observed sequence
{

e
(i)
k

}

.

When θ = θ(j) ∈ Θ, such a result is trivial since the MMAE

process will identify the correct model with ̟
(j)
k = 1 and

therefore Eq. (10) will result in consistent estimates of the

system state and covariance. When θ = θ(j) 6∈ Θ the contrary

also holds. Inexact in the knowledge of θ will often lead

to degraded filter performance and, consequently, degradation

of the MMAE process. This is attributed to the fact that

the filter is designed to a particular model. In specific, the

errors manifest in the state error covariance matrix, and are

distributed to the state estimates through the Kalman gain. In

what follows, equations for the estimation error covariance are

developed which account for the deviation of the hypothesized

model from the actual system.

Let the true system under consideration be given by

xk+1 = fk(xk, θ) + Γkwk (12a)

yk = Hkxk + vk (12b)

where the dynamic model of the system is dependent upon the

model θ. As before, the discrete nature of Eq. (12a) can be

intrinsic to the system or introduced as an approximation of the

continuous-time system dynamics. Linearization of Eq. (12a)

leads to

xk+1 = Φk(θ)xk + φk + Γkwk (13)

where Φk(θ) is the time-dependent state transition matrix

dependent upon the model θ and, although not explicitly

noted, the current state xk. A deterministic bias φk is present

to account for the effects of nonlinearities [12]:

φk ≡ fk(xk, θ)− Φk(θ)xk (14)

Suppose that θ(j) 6= θ is the model we wish to derive our

filter around. It follows then that the linearized system to be

designed to is modeled by [13]

x
(j)
k+1 = Φ

(j)
k x

(j)
k + φ

(j)
k + Γkwk (15a)

y
(j)
k = Hkx

(j)
k + vk (15b)

where Φ
(j)
k = Φk(θ

(j)). The state error covariances resulting

from a Kalman filter designed to Eq. (15) will necessarily not

be consistent with the observed errors since the filter does not

account for the model errors originating from the fact that the

filter is designed to an incorrect model. To that extent, it is

desired to develop expressions for the actual estimation error

covariance, accounting for both measurement uncertainty and

the modeling error.

Following [13], let the actual a posteriori and a priori

estimation errors be defined as

x̃
+(j)
k ≡ xk − x̂

+(j)
k (16a)

x̃
−(j)
k+1 ≡ xk+1 − x̂

−(j)
k+1 (16b)



The observation model is assumed to be precisely known. The

a posteriori errors therefore assume the familiar form [14]:

x̃
+(j)
k =

[

I −K
(j)
k Hk

]

x̃
−(j)
k −K

(j)
k vk (17)

The a posteriori covariance is then given by

P
+(j)
k ≡ E

[

x̃
+(j)
k x̃

+(j)T

k

]

=
[

I −K
(j)
k Hk

]

P
−(j)
k

[

I −K
(j)
k Hk

]T

+K
(j)
k RkK

(j)T

k (18)

where the a posteriori covariance has been defined as

P
−(j)
k ≡ E

[

x̃
−(j)
k x̃

−(j)T

k

]

(19)

The a priori errors are given by substituting Eqs. (13) and

(15a) into Eq. (16b), leading to

x̃
−(j)
k+1 = Φkxk − Φ

(j)
k x̂

+(j)
k +∆φ

(j)
k + Γkwk (20)

where ∆φ
(j)
k ≡ φk − φ

(j)
k and the explicit dependent of Φk

on θ has been omitted for clarity. Defining

∆Φ
(j)
k ≡ Φk − Φ

(j)
k (21)

as the model error of the j th model allows Eq. (20) to be

written as

x̃
−(j)
k+1 = Φ

(j)
k x̃

+(j)
k +∆Φ

(j)
k xk +∆φ

(j)
k + Γkwk (22)

Substituting this result into Eq. (19) leads to

P
−(j)
k+1 = Φ

(j)
k P

+(j)
k Φ

(j)T

k +Φ
(j)
k E

[

x̃
+(j)
k xT

k

]

∆Φ
(j)T

k

+Φ
(j)
k E

[

x̃
+(j)
k

]

∆φ
(j)T

k +∆Φ
(j)
k E

[

xkx̃
+(j)T

k

]

Φ
(j)T

k

+∆Φ
(j)
k E

[

xkx
T
k

]

∆Φ
(j)T

k +∆Φ
(j)
k E [xk] ∆φ

(j)T

k

+∆φ
(j)
k E

[

x̃
+(j)T

k

]

Φ
(j)T

k +∆φ
(j)
k E

[

xT
k

]

∆Φ
(j)T

k

+∆φ
(j)
k ∆φ

(j)T

k + ΓkQkΓ
T
k (23)

After defining the following auxiliary quantities:

C
+(j)
k ≡ E

[

xkx̃
+(j)T

k

]

(24a)

Xk = E
[

xkx
T
k

]

(24b)

mk = E [xk] (24c)

∆m
+(j)
k = E

[

x̃
+(j)
k

]

(24d)

Eq. (23) becomes

P
−(j)
k+1 =Φ

(j)
k P

+(j)
k Φ

(j)T

k + Φ
(j)
k C

+(j)T

k ∆Φ
(j)T

k

+Φ
(j)
k ∆m

+(j)
k ∆φ

(j)T

k +∆Φ
(j)
k C

+(j)
k Φ

(j)T

k

+∆Φ
(j)
k Xk∆Φ

(j)T

k +∆Φ
(j)
k mk∆φ

(j)T

k

+∆φ
(j)
k ∆m

+(j)T

k Φ
(j)T

k +∆φ
(j)
k mT

k∆Φ
(j)T

k

+∆φ
(j)
k ∆φ

(j)T

k + ΓkQkΓ
T
k (25)

Recursive relationships for the auxiliary equations are readily

obtained using Eqs. (17), (20) and (24):

Xk+1 = ΦkXkΦ
T
k +Φkmkφ

T
k + φkm

T
kΦ

T
k

+ φkφ
T
k + ΓkQkΓ

T
k (26a)

mk+1 = Φkmk + φk (26b)

∆m
+(j)
k+1 =

[

I −K
(j)
k Hk

]

×
[

Φ
(j)
k ∆m

+(j)
k +∆Φ

(j)
k mk +∆φ

(j)
k

]

(26c)

The recursion for C
+(j)
k is broken into two steps for simplicity.

Substituting Eq. (17) into Eq. (24a) leads to

C
+(j)
k = C

−(j)
k

[

I −K
(j)
k Hk

]

(27)

where C
−(j)
k ≡ E

[

xkx̃
−(j)T

k

]

. Using Eqs. (22) and (13) then

leads to

C
−(j)
k+1 =ΦkC

+(j)
k Φ

(j)T

k +ΦkXk∆Φ
(j)T

k +Φkmk∆φ
(j)T

k

+ φk∆m
+(j)T

k Φ
(j)T

k + φkm
T
k∆Φ

(j)T

k + φk∆φ
(j)T

k

+ ΓkQkΓ
T
k (28)

A. Estimates of the True System

Generally speaking, the expressions for the actual estimation

error covariances are not tractable since their computation

requires knowledge of the true, yet unknown, state transition

matrices
{

Φk

}

, and biases
{

φk

}

. For single filter applications,

this means that the actual estimation error covariances cannot

be determined. However, when combined with the multiple

model approach of Section III, the actual estimation error

covariances become computable quantities since estimates of

the true system model are available. Using θ̂k and x̂+
k from the

MMAE algorithm it is possible to calculate the required state

transition matrices and biases necessary to obtain estimates for

the actual estimate error covariance.

B. Updated Kalman Gain Computation

The estimated actual estimation error can be used to provide

more accurate bounds on the MMAE estimated state through

Eq. (10b). However, this information is purely supervenient

and will not impact the accuracy of the estimates themselves.

However, this additional information can be incorporated into

the individual filters by using the actual estimation error

covariances to calculate the Kalman gain:

K
(j)
k = P̂

−(j)
k HT

k

[

HkP̂
−(j)
k HT

k +Rk

]−1

(29)

A summary of the model error Kalman filter using the MMAE

estimated quantities can be found in Table I. Note that the

modifier (̂·), denoting an estimate, has been added to the

actual covariance matrices P̂
+(j)
k and P̂

−(j)
k+1 as well as the

auxiliary variables to denote that these quantities are the result

of using the MMAE estimated quantities. Additionally, herein

P̂
+(j)
k and P̂

−(j)
k+1 with be referred to as the estimated actual

estimation error covariances.



Justification for using the Kalman gain in Eq. (29) can be

seen as follows. During the update, the error is a difference

of states generated by different systems. If the Kalman gain

of Eq. (5a) is used, then no uncertainty due to the unknown

model is ever introduced into the filter. As a result, the filter

acts in a suboptimal manner, overconfident in the estimates.

As a result, estimates will typically be inconsistent with the

filter predicted covariance. In certain cases, the filter-produced

covariance bounds may indicate a stable system while the

actual estimation errors are unstable. By accounting for the

uncertainty in the model, the estimated actual estimation

error covariances are more conservative than P
+(j)
k or P

−(j)
k .

Therefore a Kalman gain derived using P
−(j)
k will tend to

rely on the model more than the observations which can lead

to erroneous state estimates by inadvertently discounting the

data derived from the actual system. By calculating the gain

using Eq. (29), the filter will provide better balance between

the uncertainties present in the model and observations.

C. MMAE using Model Error Kalman Filter

Since the sequence
{

E
(j)
k

}

will be the the innovations se-

quence of
{

e
(j)
k

}

if and only if θ(j) = θ, Eq. (9) can represent

only an approximation to the mode-conditioned likelihood

function because the observed innovations sequence and com-

puted covariances are not matched, i.e. e
(j)
k = f1

(

θ, θ(j)
)

while E
(j)
k = f2

(

θ(j)
)

, only. By using the estimated actual

estimate covariance, a better approximation to the covariance

of e
(j)
k+1 is available:

E
(j)
k+1 = Hk+1P̂

−(j)
k+1 H

T
k+1 +Rk+1 (30)

so that an alternate weight recursion to Eq. (8) using the

estimated actual innovations covariance is given by

ω
(j)
k+1 =

ω
(j)
k L(ỹk+1|θ = θ(j), Ỹk)

M
∑

ℓ=1

[

ω
(ℓ)
k L(ỹk+1|θ = θ(ℓ), Ỹk)

]

(31)

with

L(ỹk+1|θ = θ(j), Ỹk) ∼ N
(

e
(j)
k+1;0,E

(j)
k+1

)

(32)

This derivative of the MMAE algorithm utilizing Eq. (32) in

conjunction with the Kalman filter in Table I will be herein re-

ferred to as the model error MMAE algorithm. Architecturally,

model error MMAE differs from the standard MMAE in that

each of the individual filters must have access to the fused

MMAE output model and states. This architecture is similar

in form to IMM. However, model error MMAE and IMM

fundamentally differ in the information shared between the

individual filters. With IMM, information regarding the state

estimates and respective covariances are distributed whereas

model error MMAE distributes knowledge about the fused

model estimate. This also affords model error MMAE com-

putational savings over IMM. The model error MMAE fusion

of the best estimate model reduces to a fusion in θ which

will often be much smaller than the dimension of the state

space. Furthermore, IMM requires 2M fusions, M in the state

vector and M in the covariance while model error MMAE

requires only a single fusion. It should be noted that model

error MMAE requires additional computations in maintaining

the auxiliary quantities and determining the model errors.

However, through simulation, it has been observed that model

error MMAE still yields a computational savings over IMM.

V. NUMERICAL SIMULATIONS

A. Air Traffic Control Benchmark Problem

The first simulation considers a common example of a

civilian air traffic control (ATC) tracking problem. In this prob-

lem, a target (aircraft) is tracked without a priori knowledge

of any maneuvering the aircraft may perform. As discussed

is Ref. [19], the three dimensional motion of the aircraft

can typically be decoupled into the vertical and horizontal-

planar motions with sufficient tracking results. For the current

simulation, it is assumed that the aircraft is in level flight so

that only the planar motion need be considered. While in level

flight, an aircraft engages in only two modes of operation;

straight-line motion and coordinated turns. The dynamics of

this benchmark problem are well-known and therefore omitted

here for brevity.

The target motion is tracked using standard MMAE, model

error MMAE and IMM. The hypothesis set consists of nine-

teen coordinated turn models with different angular rates

and a single constant velocity model. The nineteen angular

rates are generated using a quasi-random Sobol sequence1 on

the support [−5, 5]. For the IMM algorithm, the transition

probability matrix was defined so that the probability that

a model did not transition was 10 times higher than the

probability that a transition occurs. Since each model is not

perfectly known, a small amount of process noise is assumed

by the filters only, i.e. the true trajectory is not generated using

any process noise disturbances. The affect of the process noise

is characterized by [14]

ΓkQkΓ
T
k = 0.052









∆t3/3 ∆t2/2 0 0
∆t2/2 ∆t 0 0

0 0 ∆t3/3 ∆t2/2
0 0 ∆t2/2 ∆t









(33)

The initial covariance of the states are taken as 10002 m2 in

position and 1002 (m/s)2 in the velocity states.

As expected, standard MMAE is not able to track the target

with any level of accuracy once the first maneuver is initiated.

This is because by the time the first maneuver takes place,

the algorithm has already given unity weight to the constant

velocity model. Overall, model error MMAE and IMM provide

accurate tracking performance with IMM providing slightly

better performance near the maneuvers. The state estimation

errors and 3σ covariance bounds can be found in Figure 1. As

can be seen, the IMM slightly outperforms the model error

MMAE although it should be noted that model error MMAE

still provides for consistent estimates due to consideration of

the estimated actual estimation error covariances.

1http://www.mathworks.com/help/stats/sobolset.html, sobolset



TABLE I
MODEL ERROR KALMAN FILTER WITH ESTIMATED ACTUAL STATE TRANSITION MATRIX.
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B. Space Object Tracking

A second example examines tracking of a space object in

low Earth orbit with an unknown ballistic coefficient. For

objects in low Earth orbit, atmospheric drag and the effect of

Earth’s oblateness constitute the primary perturbations from

the two-body equations of motion. Truncating the effects of

Earth gravity to include only the second zonal harmonic, the

equations of motion are given by

r̈(t) =
µ

r2
r(t) + aJ2

+ ad (34)

where aJ2
is the perturbation due the second zonal harmonic

and a function solely of the objects position and known gravi-

tational parameters of the Earth [20]. The affect of atmospheric

drag is given by

ad = −
1

2
ρBC |vrel|

2 urel (35)

where ρ is the neutral density of the atmosphere in the vicinity

of the space object, BC = cdA
m

is the ballistic coefficient for

the object. The nondimensional drag coefficient is given by cd,

A is the affective area of the object in the direction of motion

and m is the objects mass. The relative velocity of the object

through the atmosphere, vrel is assumed to be vrel = ṙ−ω⊕×r

where ω⊕ is the angular rate of the Earth. Additionally urel

is a unit vector in the direction of vrel.

The orbit of the object under consideration is given in

terms of the Keplarian orbital elements as {a, e, i, Ω, ω} =
{6775.741km, 0.0030035, 58.0579◦, 54.0425◦, 139.1568◦}.

Discrete dynamics in the form of Eq. (13) are attained through

the linearization of Eq. (34) and subsequent discretization of

the error dynamics [21]. Direct observations of the objects

position, corrupted by zero-mean Gaussian white noise with

a standard deviation of 25 m are assumed to be available at

10 second intervals. No process noise is assumed for this

test case. The atmospheric model used is a time-invariant,

exponential-decay model [22]. The true ballistic coefficient

is given by BC = 8.8, which corresponds to an object with

an average drag coefficient of 2.2 [22] and and A/m ratio of

4.0. This area-to-mass ratio is consistent with a High Area-

to-Mass (HAMR) object [23] which are typically difficult to
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Fig. 1. ATC Tracking Errors and 3σ Bounds

track due to difficulties in predicting the perturbations such

as drag.

The object is tracked using the MMAE, model error MMAE

and IMM algorithms. The model bank consists of models with

differing values for the ballistic coefficient. Ten of the models

constitute standard space objects, with A/m values randomly

selected from the uniform distribution on the unit interval. An

additional ten models account for HAMR object with A/m
selected from the uniform distribution with support [1, 6].

The position estimate errors for the three methods are shown

in Figure 2. As can be seen, the MMAE estimates begin to

quickly degrade. This is because the MMAE process converges

upon a single model which is different from the actual ballistic

coefficient. Then, by virtue of filtering with an incorrect

system, the estimators are not able to effectively track the

system. The model error MMAE is found to accurately track

the system as shown in Figure 2(b). In particular, the estimates

are found to be consistent with the predicted error bounds.
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Consistency is obtained because the actual estimation error

covariance, accounting for the model error are estimated. The

influence of the model error augments the uncertainty as can be

seen by comparing the respective 3σ bounds from the MMAE

(Figure 2(a)) estimates with those from the model error

MMAE. Further, since more accurate covariance information

is available, the Kalman gain from Eq. (29) results in a more

optimal balancing of prior and residual information, leading to

improved tracking performance. The position estimation errors

from the IMM can be found in Figure 2(c). Note that like

the model error MMAE, the IMM appears able to sufficiently

track the states although the errors are not consistent with the

predicted covariances. From a practical perspective, this result

may suffice but the inconsistency of the estimates, could prove

troublesome if the tracking information was to be used in any

subsequent analysis. It should be noted that, with regard to

this particular example, that simultaneous estimation of the

ballistic coefficient and states is possible through the use of

an augmented system with an EKF or other suitable estimator

[13] but that this approach was not taken so as to demonstrate

feasibility of the proposed algorithm in comparison to other

multiple model algorithms.

VI. CONCLUSIONS

This paper has presented a new method for state estimation

using a multiple model adaptive estimator (MMAE). Called

model error MMAE, the new estimator uses current knowledge

of the fused model estimates in order to drive recursions for the

actual estimation error covariances of the elementary filters.

As such, the estimated actual estimation error covariances

incorporate uncertainty accounting for the modeling errors

of the hypothesized models. It was found that by using the

estimated actual estimation error covariances to determine the

Kalman gain led to improved tracking performance in two

simulated examples. In both examples, the proposed model

error MMAE outperformed the standard MMAE and was com-

parable to an interacting multiple model (IMM) estimator in

tracking accuracy while producing more consistent estimates.

Owing to the requirement for the fused model estimates, model

error MMAE, like IMM, is more architecturally complex than

standard MMAE and therefore cannot be operated in a truly

decentralized manner. As compared to IMM, the proposed

algorithm was also found to be computationally favorable.

Additionally, the proposed algorithm alleviates the need for

additional tuning parameters such as the transition probability

matrix necessary with IMM. The developed approach is valid

for linear systems or systems whereby the dynamics can be

adequately modeled using a Taylor series truncated to first

order. This paper has considered errors originating only in

the dynamic model, although extensions to include errors in

the observation model are straightforward. Further extensions

to incorporate nonlinear filtering methods and other enhance-

ments are the subject of currently ongoing research.
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